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Extra Points
•Process schematic -- discussion
•Roles for computational modeling
•φ-estimation error
•Distribution prediction
•Comments
•Model-val as hypothesis testing
•UQ vis a vis model-val
•Issue: too much testing required
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Measuring Predictive Capability:
Purpose and Process
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Evolving Views of this Schematic
1.  Depicted my understanding of what 
people wanted to accomplish with 
“validated” computational models 
2.  My view: If you’re serious about 
model-validation, here’s what is required
3.  Illustrates why:

– Modeling has not achieved the supremacy 
claimed for it
» Model-based certification is perhaps an 

unrealistic expectation
» You can do a lot of work in bottom ellipse 

and still not bridge the gap to applications
– Validation is regarded as a burden

•WANTED: realistic expectations
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Some Thoughts on Computational Modeling
(adapted from presentation by Ernie Seglie, Science 

Advisor, DoD OT&E)
• Oversold

– Replacement for testing
– Decision agent

• More realistic expectations for modeling
– Hypothesis generation
– Scenario generation
– Guide in an iterative “rolling assessment” of 

performance
– Last resort -- use when there is no other choice
– Sharpen critical thinking
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Parameter Estimation Error
• The current parameter estimates, say φ^, if used 

for all predictions, contribute bias to the observed 
prediction errors, {yE – yM}

• Therefore, varφ^(yM) is not a contributor to the 
variance of the observed prediction errors
– It is inappropriate to compare observed prediction 

errors to a variance that includes varφ^(yM) 
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Comment: 
Measuring Predictive Capability vis a vis UQ
• As foam case study illustrates, predictive capability is 

measured via

– analysis of {x, y, yM} data

– no conventional UQ exercise on yM was required 
» (except to evaluate effect of x measurement error) 

(UQ = uncertainty quantification - generally the 
propagation of x or φ dist’ns. through M)

• The relevant prediction uncertainty is the difference 
between nature and model.  UQ exercises on the model 
alone CANNOT tell you anything about nature vs. model.

• UQ does have an important role: working problems that 
occur after predictive-capability is measured --
– distribution prediction
– merging results 
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Comments
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In case study, I didn’t have to do 
any Monte Carlo sorts of analysis, 
in contrast to what some people 
claim.
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Extension: Distribution Prediction
• Suppose x has an assumed probability distribution over some 

set of scenarios 
• Problem is to predict resulting dist’n. of y

• Under the statistical model for y,  
yx = yx

M + ex;    ex ~ (βx, σx),

by the law of total variance:

varx(yx)  =   varx(yx
M) +  Ex(σx

2) (when βx = 0)

• In words:
nature’s variance = model-based variance + extra-model variance
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Comment
For this relationship:

varx(yx)  =   varx(yx
M) +  Ex(σx

2) (when βx = 0)

• Stochastic propagation techniques - estimate the 
first right hand term 

• Model-Validation experiments and analyses -
estimate the second right hand term

• Many “uncertainty” analysts work the first term; 
ignore the second (and claim they’re evaluating 
prediction uncertainty!), thereby underestimating 
variability, thereby overestimating reliability, …

• Both are needed for distributional predictions
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UQ Issue:
Variability vs. Estimation Uncertainty
• Generally:

– x’s: variables that could physically vary (depending on 
scenario of interest)
» e.g., mission variables -- impact velocity and angles

– φ’s: unknown constants, estimated with error
» e.g., coefficients in equations of state.

• Treating variability and estimation uncertainty 
probabilistically, then mixing them is really not 
interpretable -- apples and oranges.

• Some in probabilistic risk analysis community now 
separate treatment of x and φ:
– nested Monte Carlos
– illustrative result: with 90% “confidence” the probability of 

failure is between .005 and .017 
» (vs. the estimated probability of failure is .010).  
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Issue: Validation as Hypothesis-Testing
• Some researchers treat model-validation as a hypothesis-

testing problem:
– Test:   H0: E(ex) = 0
– compare {yE – yM} to constructed σ {= √(σE

2 + σM
2)}

• Even if hypothesis is not rejected, this does not mean ex is 
negligible or can be ignored in characterizing predictions

• In fact, the noisier ex is, the more likely it is that the model
will ‘pass’ validation testing!

Model-validation is (should be) estimation, not hypothesis 
testing.
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Issue: 
Surely this approach requires too much testing!
Scientific assessment of predictive-capability probably 

requires more experimentation than envisioned by 
current methods

(vu-graph norm, ocular metric), 
BUT
– The foam case study is model of higher-level testing and 

measurement of predictive-capability
» focus on small no. of x-variables, linear regions
» small no. of tests

– In some cases, we will be able to merge predictive-
capability info from more numerous lower-level tests to 
derived measurement of predictive-capability at 
application level
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Analysis Issue: Putting it all together
• Research Issue: How to combine prediction error 

data/models from different levels to infer prediction 
capability for application?

• One possibility:
– yA

M = M(y1, y2, …, yk)
– yi

M = mi(xi : φi)
– yi = yi

M + ei (from predictive-capability expts. on mi)
– Analysis: propagate estimated ei distributions through M; 

estimate resulting distribution of eA and characterize 
precision of that estimate

• Example: Separate models for:
y1 = stress; y2 = strength

Combined model: 
yA = margin = y2 - y1



14

Model-Confidence in the News
DoD comparison of computer simulations versus 

live fire tests of the effect of gunfire on 
helicopter blades:

• On a scale of 1 to 10, the models scored: 
– 7 in predicting how the shell would penetrate the blade,
– 3 in predicting the destruction of the helicopter blade,
– 2 in predicting the loss of a helicopter,

» [Sandia Daily News, 10/17/96]

• modeling hierarchy: phenomenon - component - system

• predictive capability decreases as complexity increases

• validation scoring rule? ….?
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